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Abstract

It is shown that the diagrammatic cluster expansion technique for equilibrium averages of spin operators may be straightforwardly
extended to the calculation of time-dependent correlation functions of spin operators. We use this technique to calculate exactly the first
two non-vanishing moments of the spin–spin and energy–energy correlation functions of the XY model with arbitrary couplings, in the
long-wavelength, infinite temperature limit appropriate for spin diffusion. These moments are then used to estimate the magnetization
and spin–spin energy diffusion coefficients of the model using a phenomenological theory of Redfield. Qualitative agreement is obtained
with recent experiments measuring diffusion of dipolar energy in calcium fluoride.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Experimentally measured quantities in spin systems can
often be expressed in terms of time-dependent correlation
functions of spin operators [1,2]. A well-known example
is the free induction decay lineshape in solids [3,4]. Another
example is the rate of spin diffusion [5], the transport of
magnetization or spin–spin energy by mutual flips of spin
pairs having the same Zeeman splitting.

The calculation of time-dependent correlation functions
can be challenging both because of the structure of typical
Hamiltonians for spin–spin interactions and because of the
non-trivial commutation properties of spin operators. Of
particular difficulty is the analysis of correlation functions
of more than two spin operators. These arise in studying
the diffusion of spin–spin energy, a problem in which inter-
est has been revived by recent experiments that directly
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observed the diffusion of magnetization and dipolar energy
in calcium fluoride [6,7]. A phenomenological approach
developed by de Gennes [8] and Redfield [9] to calculate
spin diffusion coefficients based on the knowledge of the
first few moments of the associated correlation functions
agrees well with experiments on magnetization diffusion.
However, because of the difficulty of calculating moments
for systems with long-range interactions, such as calcium
fluoride, this approach has not been used to study spin–
spin energy diffusion in such systems, while magnetization
diffusion has only been studied to lowest order in perturba-
tion theory in the flip-flop (or XY) term of the Hamiltonian
[10].

In this paper, we present a diagrammatic technique for
calculating the moments of time-dependent correlation
functions, allowing a simplified treatment of the type of
problems mentioned above. This technique extends an
approach originally developed for calculating static, equi-
librium averages in spin systems [11–14]. The extension is
based on the cancellation of disconnected diagrams,
proved in Appendix B. This cancellation greatly reduces
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the number of diagrams one needs to consider, and consti-
tutes the primary advantage of the method.

The method is illustrated through application to the XY
model. This model was chosen because it contains the sim-
plest Hamiltonian exhibiting the dynamics of spin diffu-
sion—mutual flips of spin pairs. It is therefore expected
to qualitatively reproduce the behavior of more compli-
cated systems, such as dipolar-coupled spins in high field,
for which the dynamics is governed by the spin-flip process.
It is also useful for comparison to the perturbative limit
[10]. We calculate the first two non-vanishing moments of
the spin–spin and energy–energy correlation functions in
this model for arbitrary couplings, at infinite temperature.
The expressions are exact in the long-wavelength limit.
From these moments, analytic expressions for the diffusion
coefficients are obtained. Choosing the coupling constants
in our calculation to be those of calcium fluoride gives
numerical values in qualitative agreement with experi-
ments, as shown in Table 1. The ratio we find for the diffu-
sion coefficients of magnetization and spin–spin energy is,
however, a few times smaller than experimentally measured
[7]. This may be due to our not having considered the full
dipolar interaction, or to the importance of coherences in
the quantum state of the spin system [15], which would
not be taken into account by the present approach.

Besides the moment method, other approaches have
yielded spin–spin energy diffusion coefficients, such as
non-equilibrium statistical mechanics[16] and classical sim-
ulations.[17] However, the assumptions and approxima-
tions involved were difficult to justify and gave results
which were not in better agreement with the recent experi-
ments than those found here. Another recent calculation
[15] for dipolar interactions was limited to the first two
orders of perturbation theory in the flip-flop (XY) interac-
tion, and gave similar qualitative agreement with the exper-
iments. The work presented here should therefore
complement the previous studies.
Table 1
Summary of the results for the dipolar coupled XY model obtained from the

Moments [001]

M ð2ÞM =k2 (·10�7 cm2/s2) �5.59

M ð4ÞM =k2 (·103 cm2/s4) 1.56

M ð2ÞH =k2 (·10�7 cm2/s2) �2.80

M ð4ÞH =k2 (cm2/s4) 76.2

Results for Gaussian cutoff [001]

DM (·10�12cm2/s) 13.3
DH (·10�12cm2/s) 21.2

Ratio DH=DM 1.59
TM (·10�6 s) 13.4
TH (·10�6 s) 42.8

Experiments ([6,7]) [001]

DM Ref. [6] (·10�12 cm2/s) 7.1 ± 0.5
DH Ref. [7] (·10�12 cm2/s) 29 ± 3

Ratio DH=DM 4.1 ± 0.7
2. Model

The XY-model for N spins on a rigid lattice is

H ¼
XN

i;j

BijIþi I�j ; ð1Þ

with Bij=0.
The latin indices run over all lattice sites and the Ia

i are
spin operators defined by their commutation relations
½Ia

i ; I
b
j � ¼ dijI

c
i , where a,b,c is any cyclic permutation of x,

y, z. The I�j � Ix
j � iIy

j are raising and lowering operators.
The combination of operators, Iþi I�j , generates mutual flips
of spin pairs which are responsible for the transport of
magnetization and spin–spin energy (or heat). The coeffi-
cients Bij (i 6¼ j) are arbitrary. To make contact with dipo-
lar coupled spins, we use

Bdip
ij ¼

c2�h
4

3cos2hij � 1

r3
ij

. ð2Þ

Here, c is the nuclear gyromagnetic ratio, rij is the displace-
ment between lattice sites i and j, and hij is the angle be-
tween rij and the external magnetic field B0, which is
taken to lie along the z-axis. We do not include the Zeeman
energy in Eq. (1) as it may be eliminated by a unitary trans-
formation to the rotating frame [1].

The full Hamiltonian for dipolar coupled spins in a
strong magnetic field[1] contains an additional term
�2
PN

i;jB
dip
ij I z

i I
z
j, which we ignore here as discussed above.

A complementary approach which includes this term but
is perturbative in Eq. (1) has been discussed earlier [15].

The quantities of physical interest are correlation func-
tions of the form

cSðk; tÞ ¼
hSð�k; tÞSðk; 0Þi
hSð�k; 0ÞSðk; 0Þi ; ð3Þ

where Sðk; tÞ ¼
P

ie
ikzi SiðtÞ is a spin operator or product of

spin operators in the Heisenberg representation, and k is
moment method, with recent experimental values for comparison

[111]

�2.21

0.130

�1.08

28.4

[111] D001/D111

11.4 1.17
8.4 2.5

0.74
35.8
43.8

[111] D001/D111

5.3 ± 0.3 1.34 ± 0.12
33 ± 4 0.88 ± 0.14

6.2 ± 1.1
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the magnitude of the wavevector, which points along the
magnetic field axis. In the specific cases which we consider
below, Si is either the local magnetization, Si = �c�hIi, or
spin–spin energy, Si ¼

P
j;ðj 6¼iÞHij, at lattice site i. The

angular brackets denote averaging over an equilibrium
ensemble. For most NMR problems, including spin diffu-
sion, it suffices to consider T =1, so that Æ� � �æ = tr{� � �}/
tr{1}. The extension to finite temperature is straightfor-
ward and will not be considered here.

Below we will be interested in the moments of the corre-
lation function, Eq. (3). Expanding in Taylor series about
t = 0, we obtain

cSðtÞ ¼
X1
n¼0

1

ð2nÞ! M ð2nÞ
S t2n. ð4Þ

The even moments M ð2nÞ
S are given by

M ð2nÞ
S ¼ ð�1Þn 1

�h

� �2n hSðk; 0Þ½H; Sð�k; 0Þ�2ni
hSð�k; 0ÞSðk; 0Þi ; ð5Þ

where [A,B]n ” [A, [A, [. . . [A,B]. . .]]], with A appearing n

times. The sum in Eq. (4) involves only even powers of t be-
cause the odd moments are zero. These expressions may be
derived by expanding Sðk; tÞ ¼ eiHtSðk; 0Þe�iHt by the well-
known formula eABe�A ¼

P1
n¼0

1
n!
½A;B�n and putting the re-

sult in Eq. (3).
Following Redfield [9], one can obtain an approximate

value of the diffusion coefficient of S from the first two
non-vanishing moments [18]

DS ¼
1

k2sS

¼ 1

k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4

a3
2

ðM ð2ÞÞ3

M ð4Þ

s
; ð6Þ

where a2 and a4 are certain phenomenological parameters.
We show in the next section that each moment is propor-
tional to k2 at long wavelength, so that this expression for
DS is independent of k. Eq. (6) is obtained by matching the
terms of Eq. (4) to a phenomenological decay function of
the form fSðtÞ ¼ gSðtÞe�t=sS , where sS = (k2DS)�1 is the diffu-
sion time. The cutoff function gS (t) is different from unity
only at times short compared to the spin–spin correlation
time, TS ” ⁄/max(Bij), which is roughly the time required
for a single spin flip, and is in principle determined by the
microscopic dynamics.

The exact values of the parameters a2n are related to the
manner in which the cutoff function gS (t) vanishes at high
frequency. For example, a Gaussian and step-function cutoff
give

a2n ¼
ð�1Þnð2n�2Þ!ffiffi
p
p

22n�2ðn�1Þ! ; gSðxÞ ¼ e�x2T 2
S ;

ð�1Þn2
pð2n�1Þ ; gSðxÞ ¼ HðT�1

S � xÞ.

(
ð7Þ

Both values have the same order of magnitude. Here
gS (x) is the Fourier transform of gS (t). Since the shape
of the cutoff function is not determined within the phenom-
enological model, Eq. (6) can only be viewed as approxi-
mate. Nevertheless, this shape is not expected to be
drastically different for the magnetization and spin–spin
energy diffusion coefficients, and therefore their ratio can
be expected to have a weaker dependence on cutoff.
3. Calculation of moments

In this section, we calculate the second and fourth
moments of magnetization and spin–spin energy for the
XY model. Since we are interested in the long-wavelength
behavior, we Taylor expand the correlation function, Eq.
(3), in k. This gives

cSðk; tÞ ¼

P
i;j

eikðzi�zjÞhSið0ÞSjðtÞiP
i
hSið0Þ2i

’ 1� k2

2

P
i;j

z2
ijhSið0ÞSjðtÞiP
i
hSið0Þ2i

þOðk4Þ; ð8Þ

where zij ” zi � zj, and the terms odd in zij are zero. The
O(k4) term is safely neglected as the correlation ÆSi (0) Sj (t)
is a rapidly decaying function of the distance |ri � rj|. It de-
pends on products of the spin–spin couplings, Bij, which
are either short-ranged or, in the case of dipolar coupling,
decay algebraically on a length scale of a few lattice spac-
ings. We will demonstrate this explicitly for each moment.
The wavelength, k = 2p/k, is taken to be much longer than
this decay scale. In the calcium fluoride experiments [6,7] it
is at least 104 lattice spacings. Expanding the commutator
in Eq. (5), we obtain

M ð2nÞ
S ¼ ð�1Þnþ1k2

2
P

i
hSið0Þ2i

X
i;j

z2
ij

X2n

m¼0

2n

m

� �

ð�1ÞmhHmSjð0ÞH2n�mSið0Þi; ð9Þ

for n P 1. Here
2n
m

� �
¼ ð2nÞ!

m!ð2n�mÞ! is a binomial coefficient,
and we have used

½H; Sjð0Þ�2n ¼
X2n

m¼0

2n

m

� �
ð�1ÞmHmSjð0ÞH2n�m. ð10Þ

Eq. (9) proves the k2 dependence mentioned in the last
section.

To calculate the moments for the XY model from
Eq. (9), one must evaluate averages of the form
hHmSjð0ÞH2n�mSið0Þi. We do this using a diagrammatic
cluster-expansion technique [11–14,2], extended to Eq. (9)
with the help of a theorem proved in Appendix B. This
technique eliminates the need for keeping track of the Kro-
necker deltas that arise from the contractions of spin oper-
ators, and allows the identification of the most important
contributions to Eq. (9) at each n. It is based on an
ordered cumulant expansion of spin operator averages.
For completeness, a brief introduction to ordered cumu-
lants of spin operators, also known as semi-invariants
[11–14,2], is given in Appendix A.

3.1. Magnetization moments

Let Si ¼ �c�hIz
i , and consider the expression,



Table 2
Ordered Cumulants for spin 1/2 and T =1
ÆÆzææ =0 ÆÆ+�+�zææ =0

1
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T 2n ¼ ð�1Þnþ1
X

i;j

z2
ij

X2n

m¼0

2n

m

� �
ð�1ÞmhHmIz

jH
2n�mIz

i i;

ð11Þ
in the numerator of Eq. (9). A diagram element is associ-
ated to each operator in this expression as follows:

ð12Þ

ð13Þ

The indices k, l are dummies that are summed over, and
in practice can be left off of diagrams. One then forms all
possible topologically distinct, connected diagrams from
these elements by joining them end-to-end in all possible
ways, with the open circles for Iz inserted at vertices. The
diagram elements are numbered based on the order in
which they appear in Eq. (11). This order must be kept
track of because of the non-trivial commutation properties
of spin operators. For example, the diagrams correspond-
ing to hIz

iHIz
jHHHi are numbered as follows:

Each vertex without a circle is assigned a dummy sum-
mation index, and each vertex with a circle receives the
index corresponding to that circle. The circles correspond-
ing to i and j must appear at different vertices, since the z2

ij

factor in Eq. (11) ensures that i „ j. To each vertex is
assigned an ordered cumulant. Each interaction line has
an interaction coefficient associated with it that has the
appropriate indices. For example, the line receives
a factor of Bkl. The analytic expression corresponding to a
given diagram is formed by taking the product of all the
ordered cumulants and interaction coefficients associated
with it, and summing over all dummy indices without
restriction. The sum includes a factor of z2

ij and the appro-
priate binomial coefficients appearing in Eq. (11).

Of the total set of possible diagrams, many do not con-
tribute. There are no diagrams with free ends, as these rep-
i

j

Fig. 1. Diagram contributing to second moment for magnetization.
resent uncontracted spin operators which cause the trace to
vanish. Each vertex must have the same number of lines
leaving as entering, since all ordered cumulants with an
unequal number of raising and lowering operators are zero.
Finally, the disconnected diagrams vanish, as shown in
Appendix B.

The only diagram contributing to the second moment is
shown in Fig. 1. Its contribution to Eq. (11) is

ð14Þ

The values of the ordered cumulants are hhþ � zii ¼ 1
4

and hh� þ zii ¼ �1
4
, as given in Table 2.

The denominator of Eq. (9) may be calculated without
diagrams, and we obtainX

i

hðIz
i Þ

2i ¼ N
4

. ð15Þ

Inserting these results into Eq. (9) gives

M ð2Þ
M ¼ �k2

X
i

z2
ikB2

ik. ð16Þ

We note that, because of translational invariance, we
can drop the summation over the dummy index k.

The diagrams contributing to the fourth moment for
magnetization are shown in Fig. 2. They are calculated in
hhzzii ¼ 4 ÆÆ�++�zææ =0
hhþ�ii ¼ 1

2 ÆÆ+��+zææ =0
hhþ � zii ¼ 1

4 hhþ þ �� zii ¼ �1
2

hh� þ zii ¼ �1
4 hh� � þþ zii ¼ 1

2

ÆÆzzzææ =0 ÆÆ�+�+zææ =0
hhzzzzii ¼ �1

8 hhþ þ þ���ii ¼ 3
2

ÆÆ+�zzææ=0 hhþ þ �þ��ii ¼ 1
2

hhþz� zii ¼ �1
4 hhþ þ ��þ�ii ¼ 1

2

hhþ � þ�ii ¼ 1
2 hhþ � þ�þ�ii ¼ 1

2

hhþ þ ��ii ¼ �1
2

We use the shorthand notation + for I +, � for I�, and z for Iz. Cumulants
that do not have the same number of raising and lowering operators are
zero, and are not included. We also include only one of each set of
cumulants that differ by a cyclic permutation of its operators. As discussed
in the text, these cumulants are the same at T =1.
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Fig. 2. All topologically distinct diagrams containing two circles and four interaction lines. The diagrams shown here arise in the calculation of the fourth
moment for magnetization as well as that of the second moment for spin–spin energy. The analytic expressions for the diagrams are different in the two
cases, however.
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a similar way to those for the second moment, so we omit
the details. Table 2 shows that most of the fourth and fifth-
order cumulants are zero, which enables us to consider
only a subset of the orderings of the diagram elements.
The non-zero cumulants at fourth and fifth order corre-
spond to vertices with two ingoing and two outgoing lines,
with both ingoing lines next to each other in the order
(same for the outgoing lines). The calculation shows that
only the diagrams labelled A–C in Fig. 2 contribute. The
fourth moment is

M ð4Þ
M ¼ �4k2

X
i

z2
ikB4

ik �
X

i

z2
ikB2

ik

 ! X
i

B2
ik

 !" #
. ð17Þ
3.2. Energy moments

The expression in the numerator of Eq. (9) for spin–spin
energy, corresponding to Eq. (11), is

T 2n ¼ ð�1Þnþ1
X
i;j;k;l

z2
ij

X2n

m¼0

2n

m

� �
ð�1ÞmhHmHjlH

2n�mHiki;

ð18Þ
where Si ¼

P
k;ðk 6¼iÞHik, and:

Hik ¼H
ðþÞ
ik þH

ð�Þ
ik ; ð19Þ

H
ðþÞ
ik �

1

2
BikIþi I�k ; ð20Þ

H
ð�Þ
ik �

1

2
BikI�i Iþk . ð21Þ
We can rewrite Eq. (18) as:

T 2n ¼ 2 T ðþÞ2n þ T ð�Þ2n

� �
; ð22Þ

T ðþÞ2n �
X

i;j;k;l
z2

ij

X2n

m¼0

2n

m

� �
ð�1Þðnþmþ1Þ

hHmH
ðþÞ
jl H2n�mH

ðþÞ
ik i; ð23Þ

T ð�Þ2n �
X

i;j;k;l
z2

ij

X2n

m¼0

2n

m

� �
ð�1Þðnþmþ1Þ

hHmH
ðþÞ
jl H2n�mH

ð�Þ
ik i; ð24Þ

where use has been made of the formula

hðAþ AyÞðBþ ByÞi ¼ 2RehðAþ AyÞBi; ð25Þ
for any operators A and B.

We associate the following diagram elements with the
operators appearing in Eqs. (23) and (24).

ð26Þ

ð27Þ

The diagram element for the full interaction, H, is the
same as in the last section, i.e., Eq. (13). Dummy indices
such as k will be left off of the diagrams as before.

The calculation of Eq. (18) is similar to that of Eq. (11).
In this case, however, the interaction lines due to H

ðþÞ
ik and

H
ð�Þ
ik receive an additional factor of 1

2
, because this factor
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appears in Eqs. (20) and (21). The final result is multiplied
by the factor 2 appearing in Eq. (22).

The diagrams contributing to the second moment for
spin–spin energy are shown in Fig. 2. These diagrams are
exactly the same as the ones arising in the calculation of
the fourth moment for magnetization. However, their
meaning is different, as now there are no Iz operators,
and we deal with a different set of ordered cumulants.
We note that the diagrams at order (2n) for spin–spin
energy are always the same as those at order (2n + 2) for
magnetization.

One can easily see that the diagrams labelled E–G in
Figs. 2 are zero. Associated with each of them is the prod-
uct of ordered cumulants, hhþ�ii4 ¼ 1

16
. Because this

cumulant factor is the same regardless of the order of dia-
gram elements, we can move all the diagrams to the left of
the second summation sign in Eq. (18). For example, dia-
gram (E) gives

ð28Þ

Since the sum over binomial coefficients is zero, we have
T2 (e) = 0.

By direct calculation, it is also easily found that the dia-
grams labelled (A–C) are zero. The only diagram contrib-
uting to the second moment for spin–spin energy is
therefore diagram (D) of Fig. 2. Eq. (18) then reads

ð29Þ

According to Table 2, ÆÆ+�+�ææ = 0. This restricts the
possible orderings of the diagram elements, since not all
vertices with four lines are allowed. Therefore

ð30Þ

The product of ordered cumulants is the same for each
diagram in Eq. (30). It is hhþ�ii2hhþ þ ��ii ¼
ð1

2
Þ2ð�1

2
Þ ¼ �1

8
. Multiplying by 1

4
for the two circles, we obtain

T 2 ¼ 2 � 1

8

� �
1

4

� �X
ijk

z2
ijB

2
ikB2

jk � 1ð3Þ � 2ð2Þ þ 1ð3Þ½ �

¼ � 1

8

X
ijk

z2
ijB

2
ikB2

jk. ð31Þ
The denominator of Eq. (9) is given by
hhþ�ii2

P
ijB

2
ij ¼ 1

4

P
ijB

2
ij. Inserting these results into Eq.

(9), we obtain

M ð2Þ
H ¼ �

k2

4

P
ij

z2
ikB2

ijB
2
jkP

i
B2

ik

; ð32Þ

where we have used translational invariance to drop one of
the summations.

The types of diagrams arising in the calculation of the
fourth moment are shown in Fig. 3. To save space, the dis-
tinct topologies are pictured without circles. The entire set
of diagrams at fourth order is obtained by placing two cir-
cles at the vertices of the diagrams in Fig. 3 in all possible
ways. The result is straightforward to calculate, and is

M ð4Þ
H ¼ k2

X
ij

z2
ikB2

ikB2
jk � 2k2

P
ij

z2
ik B2

ikB4
jk þ B4

ikB2
jk

� �
P

i
B2

ik

� 9

4
k2

�

P
ij

z2
ikB2

ikB2
jkB2

ijP
i

B2
ik

� k2

4

�

P
ijl

z2
ik 6B2

ikBjkBklBijBil � 18BikB2
jkBklBijBjl þ 11BjkBklBijBilB2

jl

� �
P

i
B2

ik

.

ð33Þ

The sums over the index k are left off, as usual. The first
term in Eq. (33) comes from diagrams (A) and (B). Diagram
(C) is of the same order of magnitude, and gives the second
term in this equation. Diagrams (D) and (E) give rise to the
third term, and are an order of magnitude smaller for short-
ranged or dipolar coupling. Diagrams (G–I) give the last
term in Eq. (33) and are another order of magnitude small-
er. The general guidelines are that those diagrams with the
greatest number of lines per pair of vertices are the largest.
The ones with several pairs of vertices joined by only a sin-
gle line, such as diagrams (G–I), are the smallest. There are
exceptions to these guidelines (For example, diagram (F)
vanishes, for the same reason as does the corresponding dia-
gram at second order.), so care must be taken in their appli-
cation. As for the second moment, the diagrams (L) vanish,
as do diagrams (J) and (K).

4. Numerical results for dipolar-coupled XY model

The results of numerical evaluation of the moments cal-
culated in the last section for Bij ¼ Bdip

ij (see Eq. (2)), are
given in Table 1. This corresponds to dipolar coupling.
We have used values of the gyromagnetic ratio and lattice
spacing for the fluorines in calcium fluoride of c = 2.51 ·
104 rad s�1 Oe�1 and a = 2.73 · 10�8 cm. Because lattice
sums can be evaluated numerically only for finite lattice
sizes, we used finite size scaling to extract the infinite lattice
limit. The approach to the infinite lattice value is expected
to follow a power law. For example, if we approximate the
sums by integrals in Eq. (16),
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H

L

GFE

I J K

Fig. 3. All topologically distinct diagrams containing six interaction lines. Diagrams for the fourth energy moment are obtained by placing circles with
indices i and j at vertices in all distinct ways.
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M ð2Þ
M � �k2

Z
a6r6L

d3rBdipðrÞ2z2

	 const�
Z L

a
r2dr

1

r3

� �2

r2 ¼ const� 1

a
� 1

L

� �
. ð34Þ

We performed a least squares fit to a power law of
the quantities in Eqs. (16), (17), (32), and (33) as a
function of lattice size, for both the [001] and [11 1]
orientations of the crystal with respect to the external
field. We found it sufficient to vary the lattice size
between 1 and 81 lattice sites on an edge, in incre-
ments of 2 lattice sites. This gave agreement with Eq.
(34) to better than one percent. The numbers in Table
1 are the infinite lattice values extracted from the scal-
ing analysis.

Besides the moments, Table 1 gives the values for the
diffusion coefficients for both Gaussian and step-function
cutoff (see Eq. (7)), as well as their ratio. We find fair agree-
ment with experiments on calcium fluoride for the magni-
tudes of both diffusion coefficients. For magnetization,
our value is slightly high, while for spin–spin energy it is
slightly low. The ratio DH=DM that we calculate is about
1.6 for the [001] direction, while in these experiments it is
between 4 and 6. Given the phenomenological nature of
the theory we feel this to be adequate agreement. For the
[111] direction, the results are quite different, giving a ratio
of diffusion coefficients that is less than one. We cannot
account for this difference but conjecture that it may be
the result of neglecting the Ising, or IzIz, term from the
calculation.

As an additional check for consistency of this theory we
have calculated the value of the short time cutoff, TS, using
its relation[10] to the moments of the appropriate cutoff
function in Eq. (7). As Table 1 shows, TS was found to
be on the order of 10–100 ls for the different cutoff func-
tions and crystal orientations that we considered. This is
consistent with the assumption that TS is related to the
spin–spin correlation time given by the free induction
decay. The timescale associated with this decay in calcium
fluoride is approximately 20 ls with the external field in the
[001] direction and approximately 50 ls with the external
field in the [111] direction [4].
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5. Conclusion

We have shown how the diagrammatic technique for
calculating equilibrium correlation functions in spin sys-
tems may be adapted to the evaluation of multi-spin
dynamical correlation functions. We used this technique
to obtain exactly the first two non-vanishing moments of
the magnetization and spin–spin energy autocorrelation
functions of the XY model at infinite temperature and long
wavelength. The results were used to estimate the magneti-
zation and spin–spin energy diffusion coefficients in the
case of dipolar coupling, using a phenomenological
moment method. We found qualitative agreement with
experiments on calcium fluoride for both diffusion coeffi-
cients. The ratio of the diffusion coefficient for spin–spin
energy to that for magnetization was found to be greater
than one for the [001] orientation of the external field with
respect to the crystal axes. However, this is not large
enough to accurately account for the observations. The ori-
entation dependence of the diffusion coefficients was also in
qualitative agreement for magnetization, but not for spin–
spin energy. The lack of any experimentally observed ori-
entation dependence for spin–spin energy diffusion leads
us to conjecture that some additional, possibly k-depen-
dent, decay processes may have been at play in the experi-
ment, increasing the observed decay rates. Some artifacts
of the coherent time evolution of the spin system could also
have been involved, and would not be accounted for in the
phenomenological model of irreversible decay that was
used here. Finally, it is possible that the approximation
of dropping the Ising (IzIz) term was too drastic. A tracta-
ble calculation including this term should be possible along
the lines presented here. Although we focused here on the
spin diffusion problem, the generality of the technique
should allow for wider applicability.
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Appendix A. Ordered cumulants

Ordered cumulants are used to simplify the evaluation
of averages of spin operators summed over the lattice.
The non-zero elements of a spin operator average contain,
in general, several operators with the same lattice site
index. Since operators with different indices commute, we
may rearrange them so that all operators with the same
index are next to each other, and then factor the average
into averages over operators at different lattice sites, since
traces at different lattice sites are independent. For exam-
ple, hIþk Iz

i I
�
k Iz

i i ¼ hIþk I�k ihIz
i I

z
i i if i „ k. Since we only consider
a Hamiltonian that is invariant under lattice translations,
the averages in the last expression are independent of
index. A general spin operator average may be calculated
by grouping the operators by index in this fashion, in all
possible ways, taking care to avoid over-counting by not
including identical groupings more than once. For exam-
ple,

P
ikAikhIþi I�k i ¼

P
ikAik½dikhIþi I�i i þ ð1� dikÞhIþi ihI�k i� ¼P

iAiiðhIþi I�i i � hIþi ihI�i iÞ þ
P

ikAikhIþi ihI�k i. Defining the
ordered cumulants, hhþ�ii � hIþi I�i i � hIþi ihI�i i, hhþii �
hIþi i, and hh�ii � hI�i i, for an arbitrary index i, we obtainP

ikAikhIþi I�k i ¼ hhþ�ii
P

iAii þ hhþiihh�ii
P

ikAik.
Generalizing the above example, we define ordered

cumulants, also known as semi-invariants,[2,11–14] itera-
tively in terms of their factorization in cumulants of lower
degree. Thus:

hhþii ¼ hIþi;
hh�ii ¼ hI�i;
hhzii ¼ hI zi;
hhIzIþii ¼ hIzIþi � hhIziihhIþii;
hhIzI�ii ¼ hIzI�i � hhIziihhI�ii;
hhIþI�ii ¼ hIþI�i � hhIþiihhI�ii;
hhIzIþI�ii ¼ hIzIþI�i � hhIzIþiihhI�ii � hhIzI�iihhIþii

� hhIþI�iihhIzii � hhIziihhIþiihhI�ii;
ðA:1Þ

and so on. Ordered cumulants are related to spin operator
averages in an analogous way to the relation of cumulants
and averages in probability theory. The main difference is
that the order of the spin operators within the cumulant
is important due to their non-trivial commutation rela-
tions. Using ordered cumulants, it is possible to calculate
operator averages without restricting the summation indi-
ces, as shown in the preceding paragraph.

A list of ordered cumulants up to degree 5 for spin 1
2

and
T =1 is given in Table 2. We omit cumulants that differ
only by a cyclic permutation of their operators. In the limit
of infinite temperature in which we are interested, the den-
sity matrix is proportional to unity, and these cumulants
are the same by the properties of the trace. We note that
this cyclic invariance is not a general property at finite tem-
perature. Besides cyclic permutations, cumulants differing
by any other rearrangements in the order of the operators
generally have different values even at infinite temperature.
Finally, cumulants with unequal numbers of raising and
lowering operators are zero and are not included in the
table.

Appendix B. Cancellation of disconnected diagrams

We present a combinatorial proof of the cancellation
of disconnected diagrams for the time-independent
Hamiltonian, Eq. (1). To account for time dependence or
an IzIz term, it is possible to proceed by the standard
method via the interaction picture and S-matrix expan-
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sion.[19] However, the inapplicability of Wick�s theorem
for spin operators prohibits the factorization of time-or-
dered products into contractions, and we must eventually
use the same type of counting argument presented here.

Eq. (9) contains the term

Xn

m¼0

n

m

� �
ð�1ÞmhHn�mSjH

mSii. ðB:1Þ

There are two types of disconnected diagrams which
contribute to this term, those in which both Sj and Si

appear in the same cumulant, and those in which they
belong to different cumulants. The latter type of discon-
nected diagram is always zero, because the cyclic per-
mutation symmetry of the trace allows us to factor all
the cumulants to the left of the summation over m in
Eq. (B.1).

The case where both Sj and Si appear in the same cumu-
lant is slightly more involved. Consider the subset of dia-
grams for which l < n interaction lines form the part
which is not connected to that containing Sj and Si. The l

interaction lines can correspond to any of the nH’s appear-
ing in Eq. (B.1), whose average may be factored outside the
summation over m. Depending on which ones we choose to
factor out, there will be a different number of H’s to the
right of the operator Sj. If we choose to leave k < nH’s
to the right of Sj, we can do this in ð m

m� k
Þð n� m

l� ðm� kÞ Þ
ways. The sum over m in Eq. (B.1) for the set of diagrams
with lH’s factored out is therefore equal to

Xn

m¼0

n

m

� �
ð�1ÞmhHn�mSjH

mSii

¼ hHli
Xn�l

k¼0

hHn�l�kSjH
kA2i �

Xlþk

m¼k

ð�1Þm
n

m

� �

�
m

m� k

� �
n� m

l� ðm� kÞ

� �
. ðB:2Þ

The product of binomial coefficients in this equation is

n
m

� �
m
m� k

� �
n� m
l� ðm� kÞ

� �

¼ n!m!ðn� mÞ!
ðn� mÞ!m!ðm� kÞ!k!ðlþ k � mÞ!ðn� l� kÞ!

¼ n!

ðm� kÞ!k!ðlþ k � mÞ!ðn� l� kÞ! . ðB:3Þ
The only factors that depend on m are

1
ðm�kÞ!ðlþk�mÞ! ¼ 1

l!

�
l

m� k

�
. The sum over m in Eq. (B.2) is

therefore
Plþk

m¼kð�1Þm
�

l
m� k

�
¼ 0. This proves the vanish-

ing of disconnected diagrams.
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